A global hunt for genes that influence heart disease risk has uncovered 157 changes in human DNA that alter the levels of cholesterol and other blood fats — a discovery that could lead to new medications.

Each of the changes points to genes that can modify levels of cholesterol and other blood fats and are potential drug targets. Many of the changes point to genes not previously linked to blood fats, also called lipids. A surprising number of the variations were also associated with coronary artery disease, type 2 diabetes, obesity and high blood pressure.

The research also reveals that triglycerides — another type of blood lipid — play a larger role in heart disease risk than previously thought.

The results, published in two new papers appearing simultaneously in the journal Nature Genetics, come from the Global Lipids Genetics Consortium—a worldwide team of scientists who pooled genetic and clinical information from more than 188,000 people from many countries and heritages.

The analysis of the combined data was led by a team from the University of Michigan Medical School and School of Public Health. They used sophisticated computing and statistical techniques to search for genetic variations that modify blood lipid levels.

The results increase by more than a third the total number of genetic variants linked to blood lipids. All but one of the variants associated with blood lipids are near stretches of DNA that encode proteins.